
A SIMPLE CONTOURING PROGRAM FOR
GRIDDED DATA

By Arlen W. Harbaugh

U.S. GEOLOGICAL SURVEY

Open-File Report 90-144

Reston, Virginia

1990

DEPARTMENT OF THE INTERIOR
MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY
Dallas L. Peck, Director

For additional information Copies of this report can be
write to: purchased from:

Chief, U.S. Geological Survey
Branch of Computer Technology Books ana Open-File Reports Section
U.S. Geological Survey, MS 440 Federal Center, Bldg. 810
12201 Sunrise Valley Drive Box 25425
Reston f VA 22092 Denver, Colorado 80225

CONTENTS

Page

Abstract ... 1

Introduction ... 1

Functional design of CONTOUR .. 2

Program design .. 6

User instructions ... 7

References cited:.............. 12

Appendix -- Program listing ... 13

ILLUSTRATIONS

Figure Page

1. The grid that defines the area in which contours will be drawn 2

2. The six branches that are checked to find the second contour point ... 3

3. The three branches that are scanned to find successive points

after contour direction is established 4

4. Input data used in the example interactive session 7

5. Example output from CONTOUR program 8

A SIMPLE CONTOURING PROGRAM FOR GRIDDED DATA
by Arlen W. Harbaugh

ABSTRACT

A computer program that contours a two-dimensional array of data has been
developed. The purpose of this report is to document the contouring method and
program design and to provide user instructions. The two-dimensional array
contains Z values for each node in a grid, and the grid dimensions define the (X,Y)
coordinates for each node. Branches connect adjacent nodes vertically and
horizontally. A contour line is formed by connecting successive contour points with
straight lines. Contour points occur only on branches. If the value being contoured
is between the Z values at two adjacent nodes, the connecting branch contains a
contour point. Linear interpolation is used to find the location of a contour point on
a branch. The program is written in the FORTRAN programming language, and it
uses Graphics Kernel System (GKS) subroutine calls.

INTRODUCTION

Many computer applications use large two-dimensional data arrays as input or
produce them as ouput. It is often helpful to be able to graphically look at this data
in the form of contour plots. A simple contouring program, named CONTOUR, was
developed to contour such arrays. The program is written in the FORTRAN 77
language (ANSI, 1978), and Graphics Kernel System (GKS) (ANSI, 1985) subroutine
calls are used to draw the contours. By today's standards, CONTOUR requires only
limited computational resources; it can be run on small personal computers. The
purpose of this report is to describe the contouring method and program design,
and to provide user instructions.

CONTOUR is designed as a working tool where quick viewing is the primary need.
Unlike more sophisticated contouring software, CONTOUR does not produce
smoothed contours, fancy annotation, or publication quality; however, CONTOUR
can efficiently and conveniently draw simple contours. Input can come from almost
any fixed format file or from the unformatted files produced by the U.S. Geological
Survey Modular Ground-Water Flow Model (McDonald and Harbaugh, 1988).
CONTOUR can also draw the grid, blank out areas through which contours should
not be drawn, and plot the data values at each grid point.

A major part of most commercial software is the gridding component, which
creates gridded data from non-gridded data. CONTOUR works only with data that
are already gridded, such as data produced and used by finite-difference simulation
models. An advantage of CONTOUR, however, is that it directly contours data in
unequally spaced grids without the need to convert the data to an equally-spaced
grid, as commonly required by other contouring software.

FUNCTIONAL DESIGN OF CONTOUR

A contour plot is a way to display a three-dimensional surface using only two
dimensions. On a plan view of a two-dimensional area, lines are drawn for which
the surface has an equal value for the third dimension. The most common
application is for elevation maps, where lines of equal elevation are shown. In
CONTOUR, the two-dimensional area shown in plan view is defined by a grid as
might be used in a finite-difference model (McDonald and Harbaugh). The grid
consists of a rectangular area made of rows and columns of rectangular blocks called
cells. Each cell is located by a row and column. Row one, column one is located in
the upper, left corner. User specified distances between cell walls in the X direction,
one-dimensional array DELX, and distances between cell walls in the Y direction,
one-dimensional array DELY, define the locations of the cell walls. The center point
of each cell is called a node, and values in the third dimension, Z, are defined at each
node (figure 1). Nodes are designated by their column and row grid location. The
location of each node in a two-dimensional coordinate system can be calculated
using the known dimensions of grid cells and the assumption that nodes are in the
center of cells. The Z values are known only at the nodes, but a continuous surface is
assumed to pass through all the Z values. The Z values are stored in a two-
dimensional array that is indexed by column and row to match the grid index. The Z
values are read one row at a time starting with the first row.

COLUMN
12 3 45

I

,

,

-

-

L

"

I DELY (2)

EXPLANATION

Cell wall

Node

Branch

DELX (3)

Figure 1. -- The grid that defines the area in which contours will be drawn.

Although the user defines the grid and associated Z values using standard matrix
column and row notation, contouring is done in a Cartesian coordinate system
where X and Y are the coordinates in the grid plane, and coordinate (0,0) is the
lower, left corner. All user input dealing with rows and columns assumes that
column 1, row 1 is at the upper left corner, but the data are then transformed into
Cartesian coordinates immediately upon input. For example, DELY for the first row
becomes DELY for the last row, and Z values for the first row become Z values for the
last row. Other grid orientations could be handled by using a different
transformation of the input data.

An additional grid component called a branch (figure 1) is an important part of the
contouring method used by CONTOUR. Branches connect each pair of adjacent
nodes in the horizontal and vertical directions. It is assumed that Z values vary
linearly along branches. Thus the Z value at any point along a branch can be easily
calculated. Although cell dimensions are used to define node locations, cells and cell
walls are not directly involved in the contouring method.

Contours are constructed much like one would do by hand. For a given contour
value, the branches are scanned to find one that contains the contour value. By
linear interpolation, the (X,Y) coordinates of the point on the branch where Z is
equal to the contour value are calculated. Once a starting point is found, the closest
adjacent branches are scanned to see which way to continue the contour. There are
always six adjacent branches to which a contour could connect (figure 2). If the
current branch is a horizontal branch, there are three branches above (one to each
side and one directly across) and three branches below. If the current branch is a
vertical branch, there are three branches to the left and three branches to the right.
After the second contour point has been found, the choices for the next point are
reduced using knowledge of the contour direction. That is, it is assumed that a
contour cannot cross the same rectangle of four connected branches twice in
succession. For example, if the contour line has reached a horizontal branch, the
contour direction will be either up (that is, coming from below the branch) or down.
If the direction is up, there are only three possible branches to connect to (figure 3).
Going to any of the three downward branches would cause a rectangle of four
connected branches to be crossed twice in succession.

4

2

6

3

5

1

First point is on a
horizontal branch.

3

25

X

1 4

6

First point is on a
vertical branch.

EXPLANATION

Node

Branch

Designates branch
containing first point.

Scanned branch number
indicates scanning order

Figure 2. --The six branches that are checked to find the second contour
point.

, X 1 i

1

^^

3

^

Js
2

EXPLANATION

 Node

___ Branch

__ Contour line

Branch that is scanned to
find the next point number
indicates scanning order

Starting point
At branch X, the contour
direction is up.

Figure 3. -- The three branches that are scanned to find successive points
after contour direction is established.

A contour line is drawn by successively connecting points on branches with straight
line segments. Thus, if the grid is coarse, the contours will not be smooth. This is
actually considered an asset in the situation where the user is developing a model,
which was the original application for CONTOUR. Rough-looking contours are an
indication that the grid spacing is too coarse to represent the system being modeled.

In cases where the four connected branches that form a rectangle all contain the
contour value, it is not apparent how to construct the contour. That is, there are
multiple ways that a contour could go. For exarfiple, if the four branches labeled X,
1, 2, and 3 in figure 3 all contain the contour valiue, then the contour could
conceivably go from branch X to branches 1,2, and 3. This is where the surface
modeling capabilities of a more sophisticated program would provide considerable
improvement. Rather than perform complex calculations to make optimum contour
decisions, very simple choices are made. Of the three possible branches, the two side
branches (branches 1 and 2 in figure 3) are scanned first so that the contour line
segment currently being drawn will not cross another contour segment that would
eventually be drawn connecting the other two branches. Having contours cross
would be an invalid physical interpretation in this situation. Instead, the contour
line is drawn diagonally across such areas making the physical interpretation more
realistic. No further effort is made to choose the best diagonal direction. That is,
such a contour line could be drawn in either of two diagonal directions, but this
choice is made arbitrarily. When data from a finite-difference model are being
contoured, the unusual contours that sometimes result when there are multiple
choices for the contour path are an indication that the grid is too coarse.

When a contour line ends, either by intersecting the edge of the grid or coming to
an area where the user has specified that contours should not pass, the scanning of
the branches continues in order to find starting points for other contour lines having
the same contour value. The contouring process is completed for a contour value
only when all branches have been scanned for the value and contour lines have been
drawn to all branches that contain the value. Array IBRMAP is used to keep track of
the branches through which a line has passed for a given contour value. Before
starting a contour line on a branch or continuing a started contour line to a branch,
IBRMAP is checked to prevent a contour line for a given value from passing through
a branch more than once. As a contour line is extended to a branch, the IBRMAP
value for that branch is set.

There is one element in IBRMAP for each node, and each element in IBRMAP
contains information for two branches. IBRMAP(IJ), where I and J are the column
and row respectively for a node in the grid, contains information for the branch to
the right and the branch above node (I,J). If the branch to the right has been
traversed by a contour, the first bit of IBRMAP is set. If the branch above has been
traversed, the second bit is set. If only bit 1 is set, IBRMAP has a value of 1; if only bit
2 is set, IBRMAP has a value of 2; and if both bits are set, the value of IBRMAP is 3.
IBRMAP also provides the mechanism that allows a user to specify areas through
which contours should not pass. When this option is used, elements in IBRMAP
corresponding to the branches that are to be avoided are set to appropriate values
prior to drawing the lines for each contour value.

This contouring method works well as long as the points on a contour do not fall
exactly on a node. If that happened, the method for scanning branches would have
to be modified. Rather than adding additional scanning logic, CONTOUR prevents
contours from falling exactly on a node. Before drawing the contours for a
particular contour value, the Z values at all nodes are scanned. At each node where
the Z value is equal to the contour value, the Z value is changed by adding a small
amount to its value. The change does not significantly alterthe location of the
contour except that in some cases, it may cause a contour to completely disappear.
For example, consider a grid where the outer rows and columns of nodes all have a Z
value that is exactly 0, and all the interior nodes have positive values. If a 0 contour is
requested, CONTOUR will change all the 0 values to a very small, but positive,
number. Thus, there will be no branches on which a value of 0 will be interpolated,
and no contour will be drawn. In this example, the user could specify a contour
value that is slightly greater than 0 in order to cause a contour line to be drawn.

The program assumes that DELX and DELY values are specified in feet and converts
these to real world inches; therefore, the plot generally requires scaling so that it
will fit within the page size of the graphics device. (Other DELX and DELY units can
be used by modifying the program variable GRDUNT.) The user can choose to use
manual or automatic scaling. When using manual scaling, the user is prompted to
enter a scaling factor to convert from real world inches to plotter inches. If, after
manual scale selection, the plot is still too big for the display area of the graphics
device, the plot will be automatically reduced (by Subroutine PLTBEG). If automatic
scaling is selected, the program chooses a scale that will cause the plot to fill as much
of the page of the graphics device as possible. The program does this scaling in a
two step process. First, a scale is selected that will allow the plot to fit on an 8 by 8
inch page. The grid can occupy an 8 by 7 inch area, and an 8 by 1 inch area at the top

of the plot is used for annotation. Subroutine PLTBEG then reduces or enlarges the 8
by 8 inch area to fill as much of the actual page size as possible. The prescaling to the
8 by 8 page size is done to avoid having to specify annotation text size and
coordinate locations using real world coordinates. Because of the prescaling, plot
annotation can be specified in scaled inches for both automatic and manual scaling.

PROGRAM DESIGN

To enhance portability and ease of modification^ CONTOUR has a modular structure.
There is a main program that only sets up array storage and calls the user-interaction
routine, CON. Except in rare situations, the only array dimensions that a user might
need to change are in the MAIN program. Subroutine CON prompts for options and
controls the flow of the program. Many aspects of the user interface can be changed
by modifying CON. Although CON controls the flow of the program, most of the
work is done in small subroutines, each with a limited, independent purpose. This
makes it easy to modify a program function by providing a replacement subroutine.
The subroutines can be classified by three groups -- graphic primitives, contouring,
and support.

The graphics primitive subroutines perform the basic graphics output. These
routines start plotting (PLTBEG), end plotting (PLTEND), change color (PLTCOL), plot
a string of characters (PLTSTR), and plot a line consisting of multiple connected
points (PLTLIN). These are the only routines that directly call GKS subroutines; thus,
to use npn-GKS subroutines or to modify how GKS is used, these are the only
subroutines that must be modified.

The support subroutines are supplemental to the actual process of contouring.
Included are routines to prompt for a "yes" or "no" answer, input an array of data,
draw the grid, plot data values at each cell, set up contour blanking, and label the
plot. It is expected that many users might want to modify or replace the support
subroutines to fit their needs. For example, the input routine might be changed to
read data a different way.

The contouring subroutines are highly interdependent, and their only function is to
draw the contours, including contour labels. These routines are the most complex
and the least likely to require change; however, the contouring code was divided
into fairly small subroutines that are easy to comprehend should change be
necessary. The contouring process is initiated by calling a single subroutine,
DRWCON. The contouring subroutines could be removed from CONTOUR and
inserted into other programs. Having one integrated application that does
contouring in combination with some other function, such as array generation, is
likely to be more convenient to use than having a separate program for each
function.

The program code contains many comments to aid users who want to understand
the details of how the program works.

USER INSTRUCTIONS

The following is an interactive session using CONTOUR combined wittTexplanations of
each prompt. Figure 4 contains the DELX, DELY, and Z arrays that are used, and
figure 5 shows the output from this interactive session.

File DELX.DATA:

1500. 1000. 750.
500. 500. 500.

File DELY.DATA:

500. 500. 500. 500. 500. 500. 500,
500. 500. 750. 1000. 1500.

1000. 750. 500. 500. 500. 500. 500. 500. 500. 500.
500. 500. 500. 500. 500. 500. 750. 1000.

File Z.DATA:

0.000
3.778
0.000
3.808
0.000
3.870
0.000
3.963
0.000
4.088
0.000
4.239
0.000
4.406
0.000
4.557
0.000
4.625
0.000
4.533
0.000
4.359
0.000
4.168
0.000
3.992
0.000
3.843
0.000
3.725
0.000
3.636
0.000
3.578
0.000
3.549

0.655
3.969
0.665
4.004
0.683
4.075
0.712
4.186
0.751
4.342
0.798
4.550
0.851
4.813
0.898
5.103
0.920
5.294
0.894
5.078
0.842
4.764
0.784
4.476
0.732
4.243
0.688
4.061
0.654
3.923
0.629
3.825
0.612
3.760
0.604
3.729

1.205
4.133
1.220
4.171
1.252
4.251
1.301
4.378
1.366
4.566
1.448
4.841
1.541
5.245
1.631
5.824
1.681
6.470
1.623
5.799
1.524
5.194
1.423
4.765
1.332
4.464
1.257
4.249
1.199
4.094
1.155
3.986
1.127
3.917
1.113
3.884

1.674
4.268
1.694
4.308
1.734
4.391
1.795
4.527
1.876
4.732
1.977
5.049
2.094
5.579
2.216
6.615
2.306
9.202
2.204
6.588
2.071
5.527
1.942
4.971
1.829
4.627
1.735
4.395
1.661
4.231
1.606
4.119
1.570
4.047
1.552
4.012

2.083
4.373
2.105
4.413
2.149
4.494
2.214
4.625
2.300
4.818
2.402
5.099
2.514
5.508
2.617
6.092
2.670
6.739
2.603
6.065
2.486
5.455
2.360
5.019
2.242
4.712
2.141
4.491
2.060
4.332
1.998
4.220
1.957
4.149
1.937
4.114

2.444
4.449
2.467
4.487
2.512
4.563
2.577
4.682
2.660
4.848
2.755
5.068
2.851
5.342
2.928
5.640
2.958
5.834
2.912
5.613
2.818
5.288
2.706
4.988
2.594
4.740
2.493
4.546
2.409
4.399
2.344
4.292
2.301
4.223
2.279
4.189

2.766
4.498
2.789
4.533
2.834
4.604
2.898
4.710
2.978
4.852
3.065
5.023
3.147
5.210
3.207
5.375
3.225
5.448
3.189
5.348
3.110
5.156
3.010
4.942
2.904
4.743
2.805
4.574
2.720
4.438
2.654
4.337
2.609
4.271
2.586
4.238

3.057
4.521
3.081
4.555
3.126
4.622
3.191
4.722
3.270
4.849
3.355
4.995
3.432
5.142
3.486
5.257
3.500
5.297
3.466
5.230
3.392
5.088
3.295
4.914
3.189
4.740
3.089
4.584
3.003
4.456
2.934
4.359
2.888
4.294
2.864
4.262

3.321

3.346

3.394

3.464

3.549

3.641

3.727

3.788

3.804

3.766

3.684

3.577

3.463

3.355

3.263

3.190

3.141

3.116

3.561

3.589

3.642

3.721

3.821

3.934

4.046

4.134

4.164

4.112

4.001

3.866

3.730

3.606

3.503

3.424

3.371

3.344

Figure 4. Input data used in the example interactive session.

CONTOUR Test
RONS 1-18 COLS. 1-18

Figure 5. -- Example output from CONTOUR program.

ENTER THE NUMBER OF ROWS, NUMBER OF COLUMNS:
18,18

Grid dimensions must be entered here. The two values can be separated by
either a blank or a comma.

ENTER NAME OF FILE CONTAINING DELX VALUES (CR DEFAULTS TO 1 INCH SPACING)
DELX.DATA

Distance between cell walls in the X direction (DELX) can be read from a
file, or the spacing can (default to one inch. The default is useful when
the grid has equal spacing and when there is no need to have the contours
drawn to a specific map scale. DELX values must be input from a file if
grid spacing is unequal or if the plot will be overlaid on a scaled map.
If DELX is defaulted, then DELY is also defaulted.

8

ENTER FORMAT OF DATA FOR EXAMPLE: (15F8.0)
OR ENTER CR FOR UNFORMATTED MODULAR MODEL DATA:

(10F6.0)

To avoid the need to change the program when different data formats are
needed, the user is prompted to enter the data format. The format is
specified using standard FORTRAN rules. The unformatted option is not
likely to be useful when reading grid spacing; this option was incorporated
into the input routine for use when reading Z values.

ENTER LINE NUMBER OF START OF DATA, MULTIPLIER:
1.1

The starting line number allows data to be read from the middle of a file.
This makes it possible to read an output file generated by another program,
which might contain some data preceding the data required by CONTOUR. The
multiplier scales the data that are input. Use a multiplier of 1.0 to
avoid changing the data.

ENTER NAME OF FILE CONTAINING DELY VALUES:
DELY.DATA

ENTER FORMAT OF DATA FOR EXAMPLE: (15F8.0)
OR ENTER CR FOR UNFORMATTED MODULAR MODEL DATA:

(10F6.0)
ENTER LINE NUMBER OF START OF DATA, MULTIPLIER:

1.1

DO YOU WANT TO CONSIDER THE ENTIRE GRID(Y/N)?
Y

The user can contour a subarea of the grid if desired. If the prompt is
answered with "Y", the user is prompted to enter row and column ranges.

DO YOU WANT THE PLOT AUTOMATICALLY SCALED(Y/N)?
N

If a " Y" response is given, the plot will be automatically scaled to fill
as much of the page of the graphics device as possible. Automatic scaling
is more convenient than manual scaling and is generally the option to use
with video display devices. Manual scaling allows the userto produce a
plot to a specified scale. This makes it possible to produce a contour
plot that can be overlaid on a scaled map. Manual scaling can also be used
to maintain a constant scale when contour plots are being produced on many
different graphics devices that have different page sizes. If automatic
scaling is used, the following prompts for scaling information will not be
issued.

THE GRID LENGTH (X) AND WIDTH (Y) ARE (INCHES): 150000.
126000.

ENTER MAP SCALE DIVISOR (E.G. IF SCALE IS 1:24000, ENTER 24000):
24000

Grid spacing is divided by the scale divisor, which provides a mechanism
for the user to reduce the plot to a specific map scale. If the plot size
is left larger than will fit within the size of a page on the graphics
device being used; the plot will be automatically reduced to fit, and a
message will be written into the GKS.ERR file. Note also that 1.0 inch is
required at the top of the plot for labeling; the grid cannot extend into
this area.

THE SCALED GRID LENGTH (X) AND WIDTH (Y) ARE (INCHES): 6.25000
5.25000

IS THIS SIZE ACCEPTABLE(Y/N)?
Y

This prompt gives the user a chance to respecify the scale if the plot is
bigger than the page size of the graphics device.

ENTER DATA FILE NAME:
Z.DATA

This data file contains the two-dimensional array of Z data to be
contoured.

ENTER FORMAT OF DATA FOR EXAMPLE: (15F8.0)
OR ENTER CR FOR UNFORMATTED MODULAR MODEL DATA:

(10F8.0)

As with the input of DELX and DELY, the format of the data is user
specified. Unformatted head or drawdown data from the U.S. Geological
Survey Modular Ground-Water Flow Model (McDonald and Harbaugh) is assumed
if the format is left blank. These unformatted files can contain multiple
two-dimensional arrays (data sets), each containing head or drawdown for one
model layer at a specific simulation time. If the format is left blank,
the user is prompted for the number of the desired data set.

ENTER LINE NUMBER OF START OF DATA, MULTIPLIER:
1,1

DO YOU WANT TO USE A BOUNDARY MASK(Y/N)?
N

This option allows the user to specify areas of the grid through which
contours will not pass - that is, a blanking option. This is useful, for
example, for no-flow zones in a ground-water flow model. If a "Y" answer
is given, the user is prompted for a Z data value that indicates that a
node is to be blanked out. No contour lines will be drawn to any branch
that connects to a node having the specified value.

10

YOUR MINIMUM AND MAXIMUM DATA VALUES ARE: 0.000000
9.20200

ENTER THE NUMBER OF VALUES TO CONTOUR :
5

Up to 25 values can be contoured. Zero values can also be contoured, which
is not an absurd possibility. A user might want to draw only the grid
without any contours. The range of data values is displayed as an aid to
choosing how many contours to request.

ENTER THE 5 CONTOUR VALUES
1,2,3,4,5

These are the values to be contoured. Although in this example the
interval between contours is constant, any contour values can be specified.

DO YOU WANT THE GRID DRAWN(Y/N)?
Y

This option causes the grid to be drawn. A block-centered grid is assumed.

DO YOU WANT EACH DATA VALUE PLOTTED(Y/N)?
N

This option causes the data value at each node to be plotted. If a " Y"
answer isgiven, the user is prompted forthe number of digits to include
after the decimal point. If "-1" is entered for the number of digits,
there will be no decimal point. Plotting the data values can take a long
time on a slow pen plotter. The plotted numbers will overlap each other if
nodes are close together; the program makes no attempt to check if there is
adequate room.

ENTER PLOT TITLE:
CONTOUR Test

Any title up to 80 characters may be entered, but only those characters
that fit on the plot page will be plotted. In most situations, at least
30 characters can be plotted.

ENTER WORKSTATION TYPE:
1

When using GKS, the graphics device (workstation type) is specified by a
number. Each number is linked to a specific graphics device by the GKS
software. The possible device numbers and what devices they represent
depend on the computer system and GKS software being used.

After the workstation type is entered, the plot is generated.

PLOTTING HAS ENDED
**** STOP

When the plot is done, the program generally pauses until a carriage return
is entered before continuing to completion. This depends on the graphics
device. The program will stop after the carriage return is entered.

11

REFERENCES CITED

American National Standards Institute, 1978, Programming language FORTRAN:
American National Standards Institute, X3.9-1978,18 ch.

American National Standards Institute, 1985, Computer Graphics - Graphics
Kernel System (GKS) functional description, American National Standards
Institute, X3.124-1985, 268 p.

McDonald, M.G. and Harbaugh, A.W., 1988, A modular three-dimensional
finite-difference ground-water flow model: U.S. Geological Survey
Techniques of Water Resources Investigations, Book 6, Chapter A1,14 ch.

12

APPENDIX

PROGRAM LISTING

Main program and Subroutine CON:

C CONTOUR A Simple Contouring Program for Gridded Data
v»
C Documented in U.S. Geological Survey Open-File Report 90-144,
C titled "A Simple Contouring Program for Gridded Data"
C by Arlen W. Harbaugh
Q ***
C
C THIS MAIN PROGRAM EXISTS FOR THE PURPOSE OF ALLOWING RUN TIME ALLOCATION
C OF MEMORY. RATHER THAN HAVING TO DIMENSION A NUMBER OF ARRAYS TO BE THE
C CORRECT SIZE IN 2 AND 1 DIMENSIONS, A USER NEED DIMENSION ONLY TWO
C ARRAYS, NAMED X AND IX, IN 1 DIMENSION. SPACE WITHIN X AND IX IS
C AUTOMATICALLY DIVIDED INTO THE REQUIRED ARRAYS. OF COURSE X AND IX MUST
C BE DIMENSIONED LARGE ENOUGH TO HOLD THE DATA. IF NOT, AN ERROR MESSAGE
C IS PRINTED, TELLING THE USER WHAT DIMENSION SIZE TO USE. THIS METHOD
C MINIMIZES THE NEED FOR REDIMENSIONING.
C X MUST CONTAIN NX*NY + 2*NX + 2*NY ELEMENTS
C IX MUST CONTAIN 2*NX*NY ELEMENTS
C
C IX IS DECLARED INTEGER*2, WHICH CUTS THE MEMORY REQUIRED FOR IX IN HALF
C COMPARED TO THE DEFAULT OF INTEGER*4 ON MOST SYSTEMS. IF YOUR
C SYSTEM DOES NOT SUPPORT INTEGER*2, DELETE THE INTEGER*2 LINES IN
C ALL SUBROUTINES.

INTEGER*2 IX
DIMENSION X(IOOOO), IX(18000)

C LENX MUST BE SET TO THE DIMENSIONED SIZE OF X
C LENIX MUST BE SET TO THE DIMENSIONED SIZE OF IX

LENX=10000
LENIX=18000

C
10 WRITE(*,*) ' ENTER THE NUMBER OF ROWS, NUMBER OF COLUMNS: 1

READ(*,*) NY,NX
IF(NX.LT.l .OR. NY.LT.l) GO TO 10

C
LCZ=1
LCDELX=LCZ+NX*NY
LCDELY=LCDELX+NX
LCXLOC=LCDELY+NY
LCYLOC=LCXLOC+NX
ISUMX=LCYLOC+NY-1

C
C INTEGER ARRAYS

LCIBRM=1
LCIOUT=LCIBRM+NX*NY
ISUMIX=LCIOUT+NX*NY-1

13

c
C CHECK IF X IS DIMENSIONED BIG ENOUGH

IF(ISUMX.LE.LENX) GO TO 50
WRITE(*,11) ISUMX,LENX

11 FORMAT(1X,I7,' ELEMENTS IN THE X ARRAY HAVE BEEN USED OUT OF 1 , 17)
WRITE(*,*) ' ***X ARRAY MUST BE DIMENSIONED LARGER*** 1

C i
C CHECK IF IX IS DIMENSIONED BIG ENOUGH
50 IF(ISUMIX.LE.LENIX) GO TO 90

WRITE(*,12) ISUMIX,LENIX
12 FORMAT(1X,I7,' ELEMENTS IN THE IX ARRAY HAVE BEEN USED OUT OF 1 , 17)

WRITE(*,*) ' ***IX ARRAY MUST BE DIMENSIONED LARGER*** 1
STOP

C
90 IF(ISUMX.GT.LENX) STOP
C
C PASS ARRAYS TO THE CONTOURING ROUTINES
100 CALL CON(X(LCZ) ,X(LCDELX) ,X(LCDELY) ,X(LCXLOC) ,X(LCYLOC) ,

1 IX(LCIBRM),IX(LCIOUT),NX,NY)
STOP
END
SUBROUTINE CON(Z,DELX,DELY,XLOC,YLOC,IBRMAP,IOUT,NX,NY)

C INTERACTIVE PART OF CONTOUR PROGRAM READ DATA, ASK FOR
C OPTIONS, ETC. THEN CALL THE ROUTINES THAT DRAW THE CONTOURS
C AND DO THE OPTIONS. THIS ROUTINE CHANGES FROM A COORDINATE SYSTEM
C IN WHICH ROW 1, COLUMN 1 IS IN THE UPPER LEFT HAND CORNER TO A CARTESIAN
C COORDINATE SYSTEM.

INTEGER*2 IBRMAP,IOUT
DIMENSION Z(NX,NY), DELX(NX), DELY(NY), XLOC(NX), YLOC(NY)
DIMENSION IBRMAP(NX,NY), CLEV(25), IOUT(NX,NY)
CHARACTER*80 TITLE
CHARACTER*132 NAMIN

C
C DATA DEFINITION AND REQUIRED DIMENSIONS OF ARRAYS

C NX IS i OF NODES IN X DIRECTION
C NY IS i OF NODES IN Y DIRECTION
C DELX AND DELY ARE BLOCK SIZES -- ONE VALUE IN DELY FOR EACH GRID ROW AND
C ONE VALUE IN DELX FOR EACH GRID COLUMN ~ ROW ONE IS THE TOP ROW,
C COLUMN 1 IS THE LEFTMOST COLUMN -- DIMENSION DELX(NX) , DELY(NY)
C XLOC AND YLOC ARE NODE LOCATIONS IN CARTESIAN COORDINATES (NODES ARE
C CENTERED IN BLOCKS) -- DIMENSION XLOC(NX), DELY(NY)
C Z MATRIX CONTAINS Z VALUES FOR EACH NODf -- DIMENSION Z(NX,NY)
C IBRMAP IS A WORK AREA USED TO STORE GRJD BRANCHES THAT HAVE A CONTOUR
C DRAWN THROUGH THEM - INTEGER*2 IBRMAP(NX,NY)
C IOUT IS USED TO PREVENT CONTOURS FROM GOING INTO SPECIFIED AREAS --
C INTEGER*2 IOUT(NX,NY)
C CLEV STORES THE CONTOUR VALUES - DIMENSION CLEV(25)
C NLEVS IS THE NUMBER OF CONTOUR VALUES BEING USED

14

C TITLE CONTAINS UP TO 80 CHARACTERS FOR THE PLOT THE TITLE
C IXF,IXL,IYF,IYL MAY BE SET TO ANY RECTANGULAR SUBAREA
C WITHIN THE BOUND OF NX AND NY IF YOU DON'T WANT TO
C USE THE ENTIRE GRID
C SCALE IS MAP SCALE (IE INCHES OF REAL WORLD PER 1 INCH OF MAP)
C GRDUNT IS THE NUMBER OF INCHES IN THE UNIT THAT IS USED TO
C SPECIFY DELX AND DELY -- E.G. 12 IF THE UNIT USED IS FEET
C UPI IS THE NUMBER OF UNITS USED FOR SPECIFYING DELX AND DELY
C PER PLOTTER INCH I.E. DIVIDE A REAL WORLD COORDINATE BY
C UPI TP GET A COORDINATE IN PLOTTER INCHES
C IFILL IS A FILL FLAG TO DETERMINE HOW THE PLOT IS ADJUSTED TO FIT
C ON THE PLOTTING DEVICE. IF THE FLAG IS NOT 0, THE PLOT IS
C EXPANDED OR REDUCED TO FILL THE PAGE. IF THE FLAG IS 0, THE
C PLOT SIZE IS NOT ADJUSTED PROVIDED THAT IT WILL FIT ON THE
C PAGE.
C ILABEL IS A FLAG TO DETERMINE IF CONTOUR LABELS ARE PLOTTED. IF
C 0, LABELS ARE NOT PLOTTED
i/
C
C DELX AND DELY HAVE UNITS OF FEET

GRDUNT=12.
C
C READ IN DELX AND DELY (DELR AND DELC IN USGS MODULAR GROUND-WATER
C FLOW MODEL)
C PROMPT FOR A FILE NAME

WRITE(*,*)
50 WRITE(*,51)
51 FORMATC ENTER NAME OF FILE CONTAINING DELX VALUES',

1 ' (CR DEFAULTS TO 1 INCH SPACING): 1)
READ(*,53) NAMIN

53 FORMAT(A)
C IF NO FILE NAME IS GIVEN FOR DELX, THEN
C USE DEFAULT SPACING OF 1 REAL INCH PER GRID CELL, WHICH MEANS THAT
C A SCALE OF 1 WILL PRODUCE A PLOT NX BY NY INCHES

IF(NAMIN.EQ.' ') THEN
WRITE(*,*) ' USING DEFAULT OF 1 INCH FOR DELX AND DELY 1
DO 100 1=1,NX
DELX(I)=1./GRDUNT

100 CONTINUE
DO 110 1=1,NY
DELY(I)=1./GRDUNT

110 CONTINUE
ELSE

C IF FILE NAME WAS ENTERED, READ THE DATA
CALL DREAD(7,NAMIN,DELX,NX,1,IERR)
IF(IERR.NE.O) GO TO 50

120 WRITE(*,*) ' ENTER NAME OF FILE CONTAINING DELY VALUES:'
READ(*,53) NAMIN
CALL DREAD(7,NAMIN,DELY,NY,l.IERR)
IF(IERR.NE.O) GO TO 120

END IF
C
C REVERSE DELY SO THAT WE'RE USING A CARTESIAN SYSTEM

DO 150 J=l,NY/2

15

I=NY-J+1
TEMP=DELY(J)
DELY(J)=DELY(I)
DELY(I)=TEMP

150 CONTINUE
C
C
C RESTRICT THE GRID IF DESIRED

IXF=1
IXL=NX
IYF=1
IYL=NY
IYGRDF=1
IYGRDL=NY
CALL YESNO('DO YOU WANT TO CONSIDER THE ENTIRE GRID? 1 ,I)
IF(I.EQ.l) GO TO 300

220 WRITE(*,*) ' ENTER 1ST ROW, LAST ROW :'
READ(*,*) IYGRDF,IYGRDL
IF((IYGRDL.GT.NY).OR.(IYGRDF.LT.1).OR.(IYGRDF.GT.IYGRDL))GO TO 220

240 WRITE(*,*) ' ENTER 1ST COL., LAST COL. :'
READ(*,*) IXFJXL
IF((IXL.GT.NX).OR.(IXF.LT.1).OR.(IXF.GT.IXL)) GO TO 240

C REVERSE Y GRID VALUES SO THAT ROW 1 IS BOTTOM RATHER THAN THE TOP
IYL=NY-IYGRDF+1
IYF=NY-IYGRDL+1

C
C DEFINE A SCALE FOR CONVERTING TO PLOTTER INCHES
C FIND GRID SIZE IN REAL WORLD COORDINATES
300 UPI=1./GRDUNT

CALL NODLOC(DELX,DELY,XLOC,YLOC,UPI,XTOT,YTOT,NX,NY,IXF,IXL,IYF,
1 IYL)

C
C ASK IF AUTOMATIC SCALING IS DESIRED

CALL YESNO('DO YOU WANT THE PLOT AUTOMATICALLY SCALED? 1 ,IFILL)
IF(IFILL.NE.O) THEN

C
C FOR AUTOMATIC SCALING, SET SCALE SO THAT THE PLOT (INCLUDING 1
C INCH AT THE TOP FOR ANNOTATION) FITS ON AN 8 X 8 INCH PAGE.
C PLTBEG WILL FURTHER FIT THE PLOT TO THE ACTUAL PLOTTER PAGE SIZE.

UPI=XTOT/8./GRDUNT
IF(XTOT/YTOT .LT. 1.143) UPI=YTOT/7./GRDUNT

ELSE
C
C FOR MANUAL SCALING, PROMPT FOR A MAP SCALE

WRITE(*,*)
WRITE(*,*) ' THE GRID LENGTH (X) AND WIDTH (Y) ARE (INCHES): 1 ,

1 XTOT,YTOT

16

320 WRITE(*,*) ' ENTER MAP SCALE DIVISOR (E.G. IF SCALE IS 1 ,
1 ' 1:24000, ENTER 24000): '

READ(*,*) SCALE
WRITE(*,*)
WRITE(*,*) ' THE SCALED GRID LENGTH (X) AND WIDTH (Y) ARE 1 ,

1 ' (INCHES):',XTOT/SCALE,YTOT/SCALE
CALL YESNO('IS THIS SIZE ACCEPTABLE? 1 ,!)
IF(I.EQ.O) GO TO 320
UPI=SCALE/GRDUNT

END IF
C
C CALCULATE THE LOCATION OF NODES IN PLOT INCHES

CALL NODLOC(DELX,DELY,XLOC,YLOC,UPI,XMAX,YMAX,NX,NY,IXF,IXL,IYF,
1 IYL)

C
C READ Z VALUES
C MODIFY THIS SECTION TO MATCH THE FORMAT OF YOUR PARTICULAR DATA.
C THE DATA SHOULD BE ARRANGED IN Z SO THAT THE LOWER LEFT HAND CORNER
C IS THE ORIGIN.

WRITE(*,*)
500 WRITE(*,*) ' ENTER DATA FILE NAME: 1

READ(*,501) NAMIN
501 FORMAT(A)

CALL DREAD(7,NAMIN,Z,NX,NY,IERR)
IF(IERR.NE.O) GO TO 500

C EXCHANGE ROWS TO GET A CARTESIAN SYSTEM
DO 550 J=l,NY/2
K=NY-J+1
DO 550 1=1,NX
TEMP=Z(I,J)
Z(I,J)=Z(I,K)
Z(I,K)=TEMP

550 CONTINUE
C
C SPECIFY AREA TO IGNORE I.E. THE AREA TO BE BLANKED

CALL YESNO('DO YOU WANT TO USE A BOUNDARY MASK? 1 .IMASK)
IF(IMASK.EQ.O) GO TO 555
WRITE(*,*) ' ENTER DATA VALUE THAT INDICATES OUTSIDE OF BOUNDARY: 1
READ(*,*) BOGUS

C
C READ IN CONTOUR LEVELS
C BUT BEFORE DOING THIS, TELL THE USER WHAT THE RANGE OF THE DATA
C IS AS AN AID TO CHOOSING THE CONTOUR LEVELS
555 CALL ZRANGE(Z,NX,NY,IXF.IXL.IYF,IYL,IMASK,BOGUS,ZMIN.ZMAX)

WRITE(*,*)
WRITE(*,*) ' YOUR MINIMUM AND MAXIMUM DATA VALUES ARE: 1 ,

1 ZMIN.ZMAX
560 WRITE(*,*) ' ENTER THE NUMBER OF VALUES TO CONTOUR: 1

READ(*,*) NLEVS
IF(NLEVS.GT.25) GO TO 560
IF(NLEVS.LE.O) GO TO 600
WRITE(*,570) NLEVS

17

570 FORMAT(1X,' ENTER THE 1 ,13,' CONTOUR VALUES')
READ(*,*) (CLEV(I),I=1,NLEVS)

C
C ASK ABOUT ALL OPTIONS BEFORE PLOTTING STARTS
600 CALL YESNO('DO YOU WANT THE GRID DRAWN? 1 .IGRID)
C
680 CALL YESNO('DO YOU WANT EACH DATA VALUE PLOtTED?',IDPLT)

IF(IDPLT.EQ.O) GO TO 700
WRITE(*,*) ' ENTER NUMBER OF DIGITS TO PLOT AFTER DECIMAL POINT: 1
READ(*,*) NDEC

C
C READ IN A TITLE
700 WRITE(*,*)

WRITE(*,701)
701 FORMAT(1X,' ENTER PLOT TITLE: 1)

READ(*,702) TITLE
702 FORMAT(A)
C
C
C INITIALIZE PLOTTING

CALL PLTBEG(XMAX,YMAX+1.0,IFILL)
C
C DRAW THE GRID IF THAT OPTION WAS SELECTED

CALL PLTCOL(4)
IF(IGRID.EQ.l) CALL GRID(DELX,DELY,NX,NY,UPI,XMAX,YMAX,IXF,IXL,

1 IYF.IYL)
C
C DRAW SURROUNDING BOX AND LABEL PLOT

CALL PLTCOL(l)
CALL ANOTE(XMAX,YMAX,TITLE,IXF.IXL.IYGRDF.IYGRDL)

C
C INITIALIZE BLANKING ARRAY SO THAT THE ENTIRE AREA MAY HAVE
C CONTOURS CROSSING

DO 820 J=1,NY
DO 820 1=1,NX

820 IOUT(I,J)=0
C
C NOW SET BOUNDARY ARRAY IF THAT OPTION WAS SELECTED

IF(IMASK.EQ.l .AND. NLEVS.GT.O) CALL BOUND(Z,IOUT,NX,NY,BOGUS)
C
C DRAW CONTOURS UNLESS THERE WERE NO CONTOUR LEVELS SPECIFIED

CALL PLTCOL(2)
ILABEL=1
IF(NLEVS.GT.O) CALL DRWCON(NX,NY,Z,XLOC,YLOC,CLEV,NLEVS,

1 IBRMAP,IOUT,IXF,IXL,IYF,IYL,ILABEL)
C
C PLOT THE VALUE AT EACH NODE IF THAT OPTION WAS SELECTED.
C NDEC IS NUMBER OF DECIMAL PLACES FOLLOWING DECIMAL POINT
C HEIGHT IS THE HEIGHT OF THE SYMBOLS
C IMASK VALUE OF 1 INDICATES THAT VALUES IN BLANKED OUT AREAS
C SHOULD BE LEFT BLANK
C BOGUS IS DATA VALUE INDICATING A BOUNDARY AREA

18

900 CALL PLTCOL(3)
IF(IDPLT.EQ.l) CALL DATAPLEX,NY,Z,XLOC,YLOC,NDEC,. 10, IMASK,

1 BOGUS,IXF,IXL,IYF,IYL)
C
C END OF PLOT
1000 CALL PLTEND

WRITE(*,*)
WRITE(*i*) ' PLOTTING HAS ENDED 1
RETURN
END

19

Support subroutines:

SUBROUTINE YESNO(MES.IANS)
C
C ROUTINE TO GET YES OR NO RESPONSE TO A QUESTION
Q **^********************

CHARACTER*80 MES
CHARACTER*! IA
DO 10 1=1,80
IF(MES(I:I).EQ.'?') GO TO 20

10 CONTINUE
20 1=1-1
30 WRITE(*,2)
2 FORMAT(IX)

WRITE(*,4) MES(1:I),'(Y/N)? '
4 FORMAT(1X,A,A)

READ(*,3) IA
3 FORMAT(A)

IANS=-1
IF(IA.EQ.'Y' .OR. lA.EQ.'y 1) IANS=1
IF(IA.EQ.'N' .OR. lA.EQ.'n') IANS=0
IF(IANS.EQ.-l) GO TO 30
RETURN
END
SUBROUTINE DREAD(IUNIT,NAMIN,D,NX,NY,IERR)

C
C READ A 2-DIMENSIONAL ARRAY
C

DIMENSION D(NX,NY)
CHARACTER*16 TEXT
CHARACTER*132 FMT.NAMIN
INTEGER*4 KSTP,KPER,NCOL,NROW,ILAY

C
IERR=0

C
C INPUT THE FORMAT I

WRITE(*,*) ' ENTER FORMAT OF DATA ~ FOR EXAMPLE: (15F8.0)'
WRITE(*,*) ' OR ENTER CR FOR UNFORMATTED MODULAR MODEL DATA:'
READ(*,51) FMT

51 FORMAT(A)
C
C IF FORMAT IS BLANK, USE AN UNFORMATTED READ

IF(FMT.EQ.' ') THEN
OPEN(IUNIT,FILE=NAMIN,STATUS='OLD',FORM='UNFORMATTED 1 ,

1 ACCESS='SEQUENTIAL',ERR=110)
C
C READ THE UNFORMATTED FILE
C THERE MAY BE MORE THAN 1 DATA SET IN THE SAME FILE ~ FIND OUT
C WHICH ONE IS DESIRED. ALSO GET A MULTIPLIER THAT CAN BE USED

20

C TO SCALE THE DATA
WRITE(*,*) ' ENTER THE DATA SET NUMBER, MULTIPLIER: 1
READ(*,*) NREAD,AMULT
IF(NREAD.LT.l) NREAD=1
DO 5 I=1,NREAD
READ(IUNIT,ERR=100) KSTP,KPER,PERTIM,TOTIM,TEXT,NCOL,NROW,ILAY
IF(I.EQ.NREAD) THEN

WRITE(*,15) TEXT,ILAY,KSTP.KPER
15 FORMAT(1X,A,' IN LAYER 1 ,13,' AT END OF TIME STEP 1 ,13,

1 ' IN STRESS PERIOD',13)
END IF

C MAKE SURE THAT NROW AND NCOL MATCH NX AND NY
IF(NX.NE.NCOL .OR. NY.NE.NROW) THEN

WRITE(*,*) ' GRID SIZE CONFLICT: 1
WRITE(*,17) NX,NY,NCOL,NROW

17 FORMATC THE GRID SIZE YOU SPECIFIED AT THE START IS',215/
1 ' THE GRID SIZE SPECIFIED IN THE DATA FILE IS 1 ,215)

GO TO 100
END IF

C NOW READ THE ENTIRE ARRAY WITH 1 STATEMENT
READ(IUNIT,ERR=100) ((D(K,L),K=1,NX),L=1,NY)

5 CONTINUE
C

ELSE
C
C OPEN A FORMATTED FILE

OPEN(IUNIT,FILE=NAMIN,STATUS='OLD',FORM= I FORMATTED I ,
1 ACCESS='SEQUENTIAL 1 ,ERR=110)

C
C READ THE FORMATTED FILE
C BY SPACIFYING THE START LINE AND FORMAT (FORMAT HAS ALREADY BEEN
C READ), DATA CAN BE EXTRACTED FROM MOST ANY LISTING FILE. ALSO, A
C MULTIPLIER CAN BE USED TO SCALE THE DATA.

WRITE(*,*) ' ENTER LINE NUMBER OF START OF DATA, MULTIPLIER: 1
READ(*,*) NSKIP.AMULT
NSKIP=NSKIP-1
IF(NSKIP.LE.O) GO TO 31
DO 33 I=1,NSKIP
READ(IUNIT,29,ERR=100)

29 FORMAT(IX)
33 CONTINUE
31 DO 30 M=1,NY

READ(IUNIT,FMT,ERR=100) (D(L,M),L=1,NX)
30 CONTINUE

END IF
C
C SCALE THE DATA

DO 32 1=1,NY
DO 32 J=1,NX
D(J,I)=D(J,I)*AMULT

32 CONTINUE
C

21

CLOSE(IUNIT)
RETURN

C
C ERROR WHILE READING
100 CLOSE(IUNIT)

WRITE(*,*) ' ERROR WILE READING THE FILE 1
IERR=1
RETURN

C ERROR WHILE OPENING
110 WRITE(*,*) ' ERROR WHEN TRYING TO OPEN THE FILE 1

IERR=1
RETURN
END
SUBROUTINE ANOTE(XMAX,YMAX,TITLE,IXF,IXL,IYGRDF,IYGRDL)

Q **

C THIS SUBROUTINE DRAWS THE GRID BORDER AND PLOT ANNOTATION
£ **T)

CHARACTER*80 TITLE
CHARACTER*40 LABEL
CHARACTER*20 CROW1,CROW2,CCOL1,CCOL2
DIMENSION XB(5),YB(5)

C
C DRAW GRID BORDER

XB(1)=0.
YB(1)=0.
XB(2)=XMAX
YB(2)=0.
XB(3)=XMAX
YB(3)=YMAX
XB(4)=0.
YB(4)=YMAX
XB(5)=0.
YB(5)=0.
CALL PLTLIN(XB,YB,5)

C
C GENERATE i OF ROWS AND COLS. LABEL

TMP=IYGRDF
CALL NUMCNV(TMP,-1,CROW1,NCR1)
TMP=IYGRDL
CALL NUMCNV(TMP,-1,CROW2,NCR2)
TMP=IXF
CALL NUMCNV(TMP,-1,CCOL1,NCC1)
TMP=IXL
CALL NUMCNV(TMP,-1,CCOL2,NCC2)
LABEL='ROWS I //CROWl(l:NCRl)// l -'//CROW2(l:NCR2)// 1 COLS.

1 //CCOLl(l:NCCl)//'-'//CCOL2(l:NCC2)
C
C WRITE ROWS AND COLS. LABEL AND TITLE

CALL PLTSTR(0.,YMAX+.2,.21,LABEL,40)
CALL PLTSTR(0.,YMAX+.6,.28,TITLE,80)

C
RETURN
END
SUBROUTINE BOUND(Z,IOUT,NX,NY,BOGUS)

22

c
C ROUTINE TO SET UP IOUT ARRAY SO THAT SPECIFIED AREAS DO NOT HAVE
C CONTOURS PASS THROUGH
C SKIP AREAS WHERE Z IS EQUAL BOGUS, BY SETTING THE BRANCH OCCUPIED
C FLAGS IN ARRAY IBOUND. THE OCCUPIED FLAGS ARE IDENTICAL TO THOSE
C USED DURING CONTOURING IN ARRAY IBRMAP. ARRAY IBRMAP IS INITIALIZED
C WITH THE VALUES FROM IOUT, THUS SAVING THE ADDITION OF EXTRA
C CODE WITHIN THE ACTUAL CONTOURING ROUTINES TO DO CHECKING FOR THE
C BOUNDARY.
C IF AT NODE (I.J). THE RIGHT BRANCH IS lOUT(I.J). FIRST BIT
C THE UPPER BRANCH IS IOUT(I,J), 2ND BIT
C THE LEFT BRANCH IS lOUT(I-l.J). FIRST BIT
C THE LOWER BRANCH IS lOUT(I.J-l). 2ND BIT
Q ***

INTEGER*2 IOUT
DIMENSION Z(NX.NY). IOUT(NX,NY)

C
DO 20 J=1,NY
DO 10 1=1,NX
IF(Z(I.J).NE.BOGUS) GO TO 10

C SET THE 4 BRANCHES WHICH SURROUND NODE AS OCCUPIED.
IUP=IOUT(I.J)/2
IRIGHT=IOUT(I,J) - IUP*2
IF(IUP.EQ.O) IOUT(I.J)=IOUT(I.J) + 2
IF(IRIGHT.EQ.O) IOUT(I.J)=IOUT(I.J) + 1

C
IF(J.EQ.l) GO TO 8
IDOWN=IOUT(I,J-l)/2
IF(IDOWN.EQ.O) IOUT(I,J-1)=IOUT(I,J-1) + 2

8 IF(I.EQ.l) GO TO 10
ILEFT=IOUT(I-1.J) - IOUT(I-l,J)/2*2
IF(ILEFT.EQ.O) IOUT(I-1,J)=IOUT(I-1,J) + 1

10 CONTINUE
20 CONTINUE

RETURN
END
SUBROUTINE GRID(DELX,DELY,NX,NY,UPI,XMAX,YMAX,IXF,IXL,IYF,IYL)

p ***
C THIS SUBROUTINE DRAWS GRID LINES

DIMENSION DELX(NX), DELY(NY), XPLT(2), YPLT(2)
C
C DRAW LINES EFFICIENTLY ON A PEN PLOTTER
C DRAW VERTICAL LINES

Y=0.
XP=0.
N=IXL-1

C
DO 10 I=IXF,N
XP=XP+DELX(I)/UPI

23

XPLT(1)=XP
YPLT(1)=Y
Y=YMAX-Y
XPLT(2)=XP
YPLT(2)=Y
CALL PLTLIN(XPLT,YPLT,2)

10 CONTINUE
C
C DRAW HORIZONTAL LINES

X=XMAX
YP=YMAX
N=IYF+1

C
DO 20 I=N,IYL
J=IYL+N-I
YP=YP-DELY(J)/UPI
XPLT(1)=X
YPLT(1)=YP
X=XMAX-X
XPLT(2)=X
YPLT(2)=YP
CALL PLTLIN(XPLT,YPLT,2)

20 CONTINUE
C

RETURN
END
SUBROUTINE DATAPL (NX,NY,Z,XC,YC,NDEC,HEIGHT,IMASK,BOGUS,

1 IXF,IXL,IYF,IYL)
C
C PLOT DATA VALUES AT EACH NODE
C

DIMENSION Z(NX,NY) , XC(NX) , YC(NY)
CHARACTER*40 LABEL

C
C PLOT EFFICIENTLY ON A PEN PLOTTER

JCK=1
DO 50 J=IYF,IYL
JCK=-JCK
DO 50 K=IXF,IXL
I=K
IF(JCK.GT.O) I=IXL-K+IXF
IF(IMASK.EQ.O) GO TO 40
IF(Z(I,J).EQ.BOGUS) GO TO 50

40 CALL NUMCNV(Z(I,J),NDEC,LABEL,NC)
CALL PLTSTR(XC(I),YC(J),HEIGHT,LABEL,NC)

50 CONTINUE
RETURN
END
SUBROUTINE ZRANGE(Z,NX,NY,IXF,IXL,IYF,IYL,IMASK,BOGUS,ZMIN.ZMAX)

Q *************************************iHt*******^

C FIND THE MINIMUM AND MAXIMUM VALUES IN THE Z ARRAY WITHIN THE
C ACTIVE AREA

24

DIMENSION Z(NX,NY)
C

IF(IMASK.EQ.O) GO TO 6
DO 5 J=IYF,IYL
DO 5 I=IXF,IXL
IF(Z(I,J).NE.BOGUS) GO TO 7

5 CONTINUE
6 I=IXF

J=IYF
7 ZMAX=Z(I,J)

ZMIN=ZMAX
DO 10 J=IYF,IYL
DO 10 I=IXF,IXL
IF(IMASK.EQ.l .AND. Z(I,J).EQ.BOGUS) GO TO 10
IF(Z(I,J).GT.ZMAX) ZMAX=Z(I,J)
IF(Z(I,J).LT.ZMIN) ZMIN=Z(I,J)

10 CONTINUE
RETURN
END
SUBROUTINE NUMCNV(Z,NDEC,STRING,NCHAR)
t**************************************-

C CONVERT A REAL NUMBER TO A CHARACTER STRING
C IF NDEC IS NEGATIVE, THERE WILL BE NO DECIMAL DIGITS AND NO DECIMAL
C POINT IN THE RETURNED STRING

CHARACTER*20 STRING
CHARACTER*20 BUF
CHARACTER*7 FMT
CHARACTER*^ DEC
DATA FMT/'(F20.X)'/
DATA DEC/'0123456789 1 /

C
C USE INTERNAL WRITE TO CONVERT THE REAL NUMBER

ND=NDEC+1
IF(ND.GT.IO) ND=10
IF(ND.LT.l) ND=1
FMT(6:6)=DEC(ND:ND)
WRITE(BUF,FMT) Z

C
C FIND HOW MANY CHARACTERS ARE IN THE STRING

DO 10 ISTART=1,20
IF(BUF(ISTART:ISTART).NE.' ') GO TO 20

10 CONTINUE
C
C MOVE THE STRING TO THE TARGET STRING VARIABLE
20 ISTOP=20

IF(NDEC.LT.O) ISTOP=19
NCHAR=ISTOP-ISTART+1
STRING(1:NCHAR)=BUF(ISTART:ISTOP)
RETURN
END

25

Contouring subroutines:

SUBROUTINE DRWCON(NX,NY,Z,XLOC,YLOC,CLEV,NLEVS,IBRMAP,
1 IOUT S IXF,IXL,IYF,IYL,ILABEL)

C
C ENTRY ROUTINE FOR DRAWING CONTOURS
C

INTEGER*2 IBRMAP, IOUT ,
DIMENSION Z(NX,NY), IBRMAP(NX,NY), IOUT(NX,N^)
DIMENSION XLOC(NX),YLOC(NY),CLEV(NLEVS)

C
C SEND ONE CONTOUR LEVEL AT A TIME THROUGH SUBROUTINES

IF(NLEVS.LE.O) RETURN
DO 55 I=1,NLEVS

C
C IF A Z VALUE IS EXACTLY EQUAL TO A CONTOUR VALUE - CHANGE IT SLIGHTLY
C BECAUSE THE PROGRAM DOES NOT TEST FOR CURVES THROUGH A NODE

CHNGR=CLEV(I)+CLEV(I)*10.E-5
IF (CLEV(I).EQ.O.) CHNGR=1.E-20

C
C=CLEV(I)
DO 50 J=IXF,IXL
DO 50 K=IYF,IYL
IF(Z(J,K).EQ.C) Z(J,K)=CHNGR

50 CONTINUE
C

CALL POINTS (NX,NY,Z,CLEV(I),IBRMAP,XLOC,YLQC,IOUT,IXF,IXL,
1 IYF,IYL,ILABEL)

C
55 CONTINUE

C
RETURN
END
SUBROUTINE POINTS (NX,NY,Z,CL,IBRMAP,XC,YC,IOUT,IXF,IXL,IYF,IYL,

1 ILABEL)

C THIS SUBROUTINE WILL CAUSE ONE CONTOUR LEVEL TO BE PLOTTED.
C IT WILL GENERATE AS MANY CURVES AS REQUIRED FOR THAT LEVEL.
C IT SCANS ALL NODES LOOKING FOR PLACES TO START A CURVE. WHEN
C A START IS FOUND, "FOLLOW" IS CALLED TO DRAW THE CURVE. AFTER
C "FOLLOW" COMPLETES, SCANNING CONTINUES ALL CPOSSIBLE CURVES
C FOR THIS CONTOUR LEVEL WILL HAVE BEEN FOUND BY THE TIME ALL
C NODES ARE SCANNED.
Q ***

INTEGER*2 IBRMAP, IOUT
DIMENSION Z(NX,NY)
DIMENSION IBRMAP(NX,NY),XC(NX),YC(NY),IOUT(NX,NY)

C
C INITIALIZE IBRMAP FOR EACH LEVEL THIS INDICATES WHICH BRANCHES
C SHOULDN'T BE DRAWN TO EITHER BECAUSE THE USER WANTS THEM BLANKED
C OUT OR BECAUSE A CONTOUR HAS ALREADY GONE THROUGH.

DO 5 I=IXF,IXL
DO 5 J=IYF,IYL

26

IBRMAP(I.J) = IOUT(I,J)
IBRMAP(I.J) = IOUT(I,J)

5 CONTINUE
NC=0

C
C THIS LOOP FINDS STARTING POINTS

DO 20 J=IYF,IYL-1
DO 20 I=IXF,IXL-1

C
C CHECK IF A POINT IS ON THE HORIZONTAL BRANCH BETWEEN NODE
C I,J AND NODE I+l.J.

IF (CL .LT. Z(I,J) .AND. CL .LT. Z(I+1,J) .OR.
+ CL .67. Z(I,J) .AND. CL .67. Z(I+1,J)) GO TO 10

C
C POINT IS ON HORIZONTAL BRANCH

IBRN=1
C
C IF POINT HAS BEEN PLOTTED - SKIP IT

IRIGH7=IBRMAP(I,J)-IBRMAP(I,J)/2*2
IF(IRIGHT.NE.O) GO TO 10

C
C DRAW THE CURVE

CALL FOLLOW(NX,NY,Z,IBRMAP,XC,YC,I,J,IBRN,CL,IXF,IXL,IYF,IYL,
1 ILABEL)
NC=NC+1

C
C CURVE FOR THIS POINT COMPLETED - CONTINUE SCANNING
C
C CHECK IF A POINT IS ON THE VERTICAL BRANCH BETWEEN NODE
C i,j AND NODE I.J+1.

10 IF (CL .LT. Z(I,J) .AND. CL .LT. Z(I,J+1) .OR.
+ CL .67. Z(I,J) .AND. CL .67. Z(I,J+1)) GO TO 20

C
C POINT IS ON VERTICAL BRANCH

IBRN=2
IUP=IBRMAP(I,J)/2
IF(IUP.NE.O) GO TO 20
CALL FOLLOW(NX,NY,Z,IBRMAP,XC,YC,I,J,IBRN,CL,IXF,IXL,IYF,IYL,

1 ILABEL)
NC=NC+1

C
20 CONTINUE

RETURN
END
SUBROUTINE FOLLOW(NX,NY,Z,IBRMAP,XC,YC,L,M,IBRN,CL,IXF,IXL,

1 IYF.IYL,ILABEL)
I/

C This subroutine draws curves by connecting points on branches. The
C curve is constructed much as one might draw contours by hand. To
C continue the contour from a current branch, the surrounding
C branches in the same general direction are scanned for the same
C contour value. If found, the contour is drawn to the new
C branch. Contours are not allowed to double back within the same
C block of 4 branches because this is physically impossible and

27

C would result in discontinuities in the contours. Also, to avoid
C the potential for 2 lines representing the same contour value
C from crossing if it were to happen that all 4 branches of a
C rectangle include the contour value, the 2 side branches in the
C direction of the contour path are given drawing precedence over
C the opposite branch.
C
C Once a contour has been drawn to a given branch, there are
C only 3 surrounding branches that the contour might continue to.
C These 3 branches depend on the current direction of the contour
C and the orientation of the current branch i.e either
C horizonatl or vertical. Based on which branch the curve has
C come to and the direction that the curve is going, the order in
C which surrounding branches are scanned to try to continue the
C contour is shown below. Note that when moving from the first
C branch of a contour, it is necessary to scan all 6 directions
C for the next branch because the direction has not been
C established.
C
C CURRENT BRANCH IS HORIZONTAL (IBRN=1)
C CONTOUR DIRECTION IS UP (IDIR=1) CONTOUR DIRECTION IS DOWN (IDIR=-1)
C
C 3
C ! !
C 1 2
C ! !
C * X * X
C ! !
C 2 1
C ! !
C 3
C
C
C CURRENT BRANCH IS VERTICAL (IBRN=2)
C CONTOUR DIRECTION IS LEFT (IDIR=-1) CONTOUR DIRECTION IS RIGHT (IDIR=1)
C
C 2 2
C ! ! ! !
C 3 X X 3
C ! ! ! !
C 1 * * 1
C

INTEGER*2 IBRMAP
DIMENSION XC(NX),YC(NY),IBRMAP(NX,NY),Z(NX,NY)
DIMENSION XPLT(0:50), YPLT(0:50)
CHARACTER*20 LABEL

C
C LABEL CONTOURS EVERY MAXSEG POINTS. XPLT AND YPLT MUST BE DIMENSIONED
C FROM 0 TO MAXSEG. THE ZERO ELEMENT HOLDS THE START POINT.

MAXSEG=50
IBRNBG=IBRN
IDIR=0

28

c
C FIND COORDINATES OF STARTING POINT AND MARK BRANCH AS OCCUPIED

CALL COORDS (NX,NY,Z,XC,YC,L,M,IBRN,CL,XBG,YBG)
IBRMAP(L,M)=IBRMAP(L,M)+IBRN

C
C LABEL THE START OF THE CONTOUR

IF(ILABEL.NE.O) THEN
CALL NUMCNV(CL,1,LABEL,NC)
CALL PLTSTR(XBG+.01,YBG+.01,.14,LABEL,NC)
END IF

C
C ENTER HERE TO GO BACK TO THE START OF THE CURVE AND TRY CONTINUING
C THE CURVE IN THE OTHER DIRECTION
1 I=L

J=M
XPLT(0)=XBG
YPLT(0)=YBG
NUMSEG=0

C
C ENTER HERE TO CONTINUE DRAWING AFTER THE START POINT AND AS LONG
C AS MORE POINTS CAN BE FOUND.
5 IF(IBRN.EQ.2) GO TO 50
C
C CONTINUE FOR A POINT ON A HORIZONTAL BRANCH
C GO TO 50 FOR A POINT ON A VERTICAL BRANCH
C
C

IF(IDIR.GT.O) GO TO 25
IF(J.EQ.IYF) GO TO 24

C
C SEARCH FOR A POINT ON THE 1ST OF 3 POSSIBLE BRANCHES GOING DOWN

IF (CL .LT. Z(I+1,J) .AND. CL .LT. Z(I+1,J-1) .OR.
+ CL .GT. Z(I+1,J) .AND. CL .GT. Z(I+1,J-1)) GO TO 15

C THERE IS A POINT, SO SET PARAMETERS FOR THAT BRANCH
IBRNNX=2
INX=I+1
JNX=J-1
IDIRNX=1
IDIRRV=1

C TEST TO SEE IF THE BRANCH ALREADY HAS A CONTOUR GOING THROUGH IT
C IF NOT, GO AND DRAW THE BRANCH TO THE POINT

IF(IBRMAP(INX,JNX)/2 .EQ.O) GO TO 100
C IF THE BRANCH IS OCCUPIED ALREADY, THAT MIGHT MEAN THAT YOU'VE
C RETURNED NEAR TO THE START POINT AND NEED TO CLOSE THE CURVE.
C IF NOT THE 1ST BRANCH AND YOU'RE NEXT TO THE START POINT(L.M), GO
C AND CLOSE. OTHERWISE CONTINUE LOOKING FOR A VALID BRANCH

IF(INX.*EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90
C

15 IF (CL .LT. Z(I.J-l) .AND. CL .LT. Z(I,J) .OR.
+ CL .GT. Z(I.J-l) .AND. CL .GT. Z(I,J)) GO TO 20
IBRNNX=2
INX=I

29

JNX=J-1
IDIRNX=-1
IDIRRV=1
IF(IBRMAP(INX,JNX)/2 .EQ.O) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
20 IF (CL .LT. Z(I,J-1) .AND. CL .LT. Z(I+1,J-1) .OR.
+ CL .GT. Z(I.J-l) .AND. CL .GT. Z(I+1,J-1)) GO TO 24
IBRNNX=1
INX=I
JNX=J-1
IDIRNX=-1
IDIRRV=1
IF((IBRMAP(INX,JNX)-IBRMAP(INX,JNX)/2*2) .EQ. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
24 IF(IDIR.NE.O) GO TO 80
25 IF(J.EQ.IYL) GO TO 80
C
C SEARCH UPWARD FROM HORIZONTAL BRANCH

IF (CL .LT. Z(I,J) .AND. CL .LT. Z(I,J+1) .OR.
+ CL .GT. Z(I,J) .AND. CL .GT. Z(I,J+1)) GO TO 30
IBRNNX=2
INX=I
JNX=J
IDIRNX=-1
IDIRRV=-1
IF(IBRMAP(INX,JNX)/2 .EQ.O) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
30 IF (CL .LT. Z(I+1,J) .AND. CL .LT. Z(I+1,J+1) .OR.

+ CL .GT. Z(I+1,J) .AND. CL .GT. Z(I+1,J+1)) GO TO 35
IBRNNX=2
INX=I+1
JNX=J
IDIRNX=1
IDIRRV=-1
IF(IBRMAP(I+l,J)/2 .EQ.O) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
35 IF (CL .LT. Z(I,J+1) .AND. CL .LT. Z(I+1,J+1) .OR.
+ CL .GT. Z(I,J+1) .AND. CL .GT. Z(I+1,J+1)) GO TO 80
IBRNNX=1
INX=I
JNX=J+1
IDIRNX=1
IDIRRV=-1
IF((IBRMAP(INX,JNX)-IBRMAP(INX,JNX)/2*2) .EQ. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
C ALL POSSIBLE BRANCHES HAVE BEEN CHECKED WITHOUT FINDING ANY PATH.
C SO THE CURVE HAS DEAD-ENDED.

30

C GO BACK TO START OF THE CURVE AND TRY TO CONTINUE FROM THERE
GO TO 80

C
C VERTICAL BRANCH

50 IF(IDIR.GT.O) GO TO 65
IF (I.EQ.IXF) GO TO 64

C
C SEARCH LEFT FROM A VERTICAL BRANCH

IF (CL .LT. Z(I-1,J) .AND. CL .LT. Z(I,J) .OR.
+ CL .GT. Z(I-1,J) .AND. CL .GT. Z(I,J)) GO TO 55
IBRNNX=1
INX=I-1
JNX=J
IDIRNX=-1
IDIRRV=1
IF((IBRMAP(INX,JNX)-IBRMAP(INX,JNX)/2*2) .EQ. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
55 IF (CL .LT. Z(I-1,J+1).AND. CL .LT. Z(I,J+1) .OR.
+ CL .GT. Z(I-1,J+1).AND. CL .GT. Z(I,J+1)) GO TO 60
IBRNNX=1
INX=I-1
JNX=J+1
IDIRNX=1
IDIRRV=1
IF((IBRMAP(INX,JNX)-IBRMAP(INX,JNX)/2*2) .EQ. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
60 IF (CL .LT. Z(I-1,J) .AND. CL .LT. Z(I-1,J+1) .OR.
+ CL .GT. Z(I-1,J) .AND. CL .GT. Z(I-1,J+1)) GO TO 64
IBRNNX=2
INX=I-1
JNX=J
IDIRNX=-1
IDIRRV=1
IF(IBRMAP(INX,JNX)/2*2 .EQ. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
64 IF(IDIR.NE.O) GO TO 80
65 IF(I.EQ.IXL) GO TO 80

C
C SEARCH RIGHT FROM A VERTICAL BRANCH

IF (CL .LT. Z(I.J) .AND. CL .LT. Z(I+1,J) .OR.
+ CL .GT. Z(I,J) .AND. CL .GT. Z(I+1,J)) GO TO 70
IBRNNX=1
INX=I
JNX=J
IDIRNX=-1
IDIRRV=-1
IF((IBRMAP(INX,JNX)-IBRMAP(INX,JNX)/2*2) .EQ. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C

31

70 IF (CL .LT. Z(I,J+1) .AND. CL .LT. Z(I+1,J+1) .OR.
+ CL .GT. Z(I,J+1) .AND. CL .GT. Z(I+1,J+1)) GO TO 75
IBRNNX=1
INX=I
JNX=J+1
IDIRNX=1
IDIRRV=-1
IF((IBRMAP(INX,JNX)-IBRMAP(INX,JNX)/2*2) .E0. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBfeNBG) GO TO 90

C
75 IF (CL .LT. Z(I+1,J) .AND. CL .LT. Z(I+1,J+1) .OR.
+ CL .GT. Z(I+1,J) .AND. CL .GT. Z(I+1,J+1)) GO TO 80
IBRNNX=2
INX=I+1
JNX=J
IDIRNX=1
IDIRRV=-1
IF(IBRMAP(INX,JNX)/2*2 .EQ. 0) GO TO 100
IF(INX.EQ.L.AND.JNX.EQ.M .AND. IBRNNX.EQ.IBRNBG) GO TO 90

C
C HAVE NOT BEEN ABLE TO FIND ANY PLACE TO GO FROM HERE
C CURVE HAS DEAD-ENDED GO BACK TO THE START OF IT AND TRY TO
C CONTINUE FROM THERE IN A NEW DIRECTION UNLESS THIS HAS ALREADY BEEN
C TRIED BEFORE
80 N=MOD(NUMSEG,MAXSEG)

IF(N.GT.O) CALL PLTLIN(XPLT,YPLT,N+1)
IF(NUMSEG.EQ.O) RETURN
IBRN=IBRNBG
IDIR=IDIRBG
GO TO 1

C
C CLOSE THE CURVE
90 N=MOD(NUMSEG,MAXSEG)+1

NUMSEG=NUMSEG+1
XPLT(N)=XBG
YPLT(N)=YBG
CALL PLTLIN(XPLT,YPLT,N+1)
RETURN

C
C PLOT A FOUND BRANCH

100 CALL COORDS (NX,NY,Z,XC,YC,INX,JNX,IBRNNX,CL,XNX,YNX)
N=MOD(NUMSEG,MAXSEG)+1
NUMSEG=NUMSEG+1
XPLT(N)=XNX
YPLT(N)=YNX
IF(N.NE.MAXSEG) GO TO 110
CALL PLTLIN(XPLT,YPLT,MAXSEG+1)
IF(ILABEL.NE.O) THEN
CALL NUMCNV(CL,1,LABEL,NC)
CALL PLTSTR(XNX+.01,YNX+.01,.14,LABEL,NC)
END IF
XPLT(0)=XNX
YPLT(0)=YNX

32

C NOW SET THE BRANCH-OCCUPIED FLAG SO THAT A 2ND CONTOUR CAN'T
C GO TO THIS POINT
110 IBRMAP(INX,JNX)=IBRMAP(INX,JNX)+IBRNNX
C ADVANCE POINTERS TO THE NEXT POINT

I=INX
J=JNX
IF(NUMSEG.EQ.l) IDIRBG=IDIRRV
IDIR=IDIRNX
IBRN=IBRNNX

C
C GET NEXT POINT ON CURVE

GO TO 5
END
SUBROUTINE COORDS (NX,NY,Z,XC,YC,I,J,IBRN,CL,XP,YP)

C THIS SUBROUTINE FINDS THE COORDINATES OF A CONTOUR POINT ON A BRANCH.
C LINEAR INTERPOLATION BETWEEN THE 2 NODES IS USED.
C

DIMENSION Z(NX,NY)
DIMENSION XC(NX) , YC(NY)

C
IF (IBRN.EQ.2) GO TO 20

C
C HORIZONTAL BRANCH

10 12=1+1
J2=J
B=ABS(XC(I2)-XC(I))
GO TO 30

C
C VERTICAL BRANCH

20 12=1
J2=J+1
B=ABS(YC(J2)-YC(J))

C
30 A=ABS(CL-Z(I,J))

C=ABS (Z(I2,J2)-Z(I,J))
X=A*B/C

C
C

IF (IBRN.EQ.2) GO TO 50
C
C HORIZONTAL BRANCH

40 XP=(XC(I)+X)
YP=YC(J)
RETURN

C
C VERTICAL BRANCH

50 YP=(YC(J)+X)
XP=XC(I)
RETURN
END

33

SUBROUTINE NODLOC(DELX,DELY,XLOC,YLOC,UPI,XMAX,YMAX,NX,NY,
1 IXF.IXL.IYF.IYL)

Q **

C CALCULATE NODE LOCATIONS IN PLOTTER COORDINATES
C

DIMENSION DELX(NX),DELY(NY),XLOC(NX),YLOC(NY)
C
C CREATE X COORDINATES

SP=0.
DO 10 I=IXF,IXL
TEMP=OELX(I)/UPI
XLOC(I)=SP+TEMP/2.

10 SP=SP+TEMP
XMAX=SP

C
C CREATE Y COORDINATES

SP=0.
DO 20 I=IYF,IYL
TEMP=DELY(I)/UPI
YLOC(I)=SP+TEMP/2.

20 SP=SP+TEMP
YMAX=SP

C
RETURN
END

34

Graphics primitive subroutines:

SUBROUTINE PLTBEG(XPAGE,YPAGE,IFILL)
£ ***^

C INITIALIZE PLOTTING

COMMON /GKSCOM/NCOLDF
DIMENSION LASF(13)
DATA LASF/13*!/

C
C PROMPT FOR WORKSTATION TYPE

WRITE(*,*)
WRITE(*,*) ' ENTER WORKSTATION TYPE: 1
READ(*,*) IWSTYP

C
C OPEN GKS

OPEN(UNIT=10,FILE='GKS.ERR', STATUS='UNKNOWN')
WRITE(10,*) 'GKS ERROR FILE: 1
CALL GOPKS(10,1000)

C
C OPEN THE WORKSTATION AND FIND HOW BIG ITS PAGE IS

CALL GOPWK(1,0,IWSTYP)
CALL GACWK(l)
CALL GQDSP(IWSTYP,IERR,IUNIT,RX,RY,LX,LY)
PICASP=XPAGE/YPAGE
WSASP=RX/RY
RMTOIN=39.3701
RXM=RX*RMTOIN
RYM=RY*RMTOIN

C
C DEFINE THE WORLD COORDINATE WINDOW
C EITHER FILL THE DISPLAY COMPLETELY OR SCALE ABSOLUTELY

IF(IFILL.NE.O) GO TO 50
C
C USE ABSOLUTE SCALING IF THE PLOT WILL FIT ON THE PAGE

IF(IUNIT.NE.O) THEN
WRITE(10,*) 'GRAPHICS DEVICE COORDINATE UNITS ARE UNKNOWN'
WRITE(10,*) 'REQUEST TO USE ABSOLUTE SCALING HAS BEEN ABORTED'
GO TO 50

END IF
IF(XPAGE.GT.RXM .OR. YPAGE.GT.RYM) THEN

WRITE(10,*) 'PLOT IS TOO BIG TO FIT ON THE PLOTTER PAGE'
WRITE(10,*) 'REQUEST TO USE ABSOLUTE SCALING HAS BEEN ABORTED'
GO TO 50

END IF
XWC=RXM
YWC=RYM
GO TO 60

C
C AUTOMATIC SCALING -- FILL THE DISPLAY COMPLETELY
50 IF(WSASP.GT.PICASP) THEN

YWC=YPAGE

35

XWC=YPAGE*WSASP
ELSE

XWC=XPAGE
YWC=XPAGE/WSASP

ENDIF
C
C SET THE WORLD COORDINATE WINDOW AND THE CORRESPONDING VIEWPORT
60 CALL GSWN(1,0.,XWC,0.,YWC)

SIZE=XWC
IF(YWC.GT.XWC) SIZE=YWC
XNDC=XWC/SIZE
YNDC=YWC/SIZE
CALL GSVP(1,0.,XNDC,0.,YNDC)
CALL GSELNT(l)

C
C SET WORKSTATION TRANSFORMATION

CALL GSWKWN(1,0.,XNDC,0.,YNDC)
CALL GSWKVP(1,0.,RX,0.,RY)

C
C SETUP CHARACTER FONT 1, WHICH SHOULD EXIST IN ALL GKS VERSIONS

CALL GSASF(LASF)
CALL GSTXFP(l.l)
CALL GSCHXP(1.)
CALL GSCHSP(.15)

C
C SETUP COLORS IF GRAPHICS DEVICE SUPPORTS COLOR

CALL GQCF(IWSTYP,IERR,NCOL,ICLCAP,NDEF)
NCOLDF=2
IF(ICLCAP.EQ.O) RETURN
NCOLDF=NCOL
IF(NCOLDF.EQ.O .OR. NCOLDF.GT.5) NCOLDF=5
IF(NCOLDF.GE.3) CALL GSCR(1,2,1.,0.,0.)
IF(NCOLDF.GE.4) CALL GSCR(1,3,0.,1.,0.)
IF(NCOLDF.GE.5) CALL GSCR(1,4,0.,0.,1.)

C
RETURN
END
SUBROUTINE PLTEND

C
C TERMINATE PLOT
C

CHARACTER*! ANS
C
C SOME GKS SYSTEMS REQUIRE A PAUSE FOR THE USER TO VIEW THE PLOT
C BEFORE GKS IS CLOSED PRESS RETURN KEY TO CONTINUE.
C SOME GKS SYSTEMS HAVE A BUILT-IN PAUSE AND DO NOT REQUIRE THIS
C ADDITIONAL PAUSE ~ TO DELETE THE PAUSE, PUT "C" IN COLUMN 1 OF
C THE FOLLOWING 2 LINES:

READ(*,1) ANS
1 FORMAT(A)

CALL GDAWK(l)
CALL GCLWK(l)

36

CALL GCLKS
RETURN
END
SUBROUTINE PLTCOL(ICOLOR)

C
C CHANGE PLOT COLOR
C

COMMON /GKSCOM/NCOLDF
C
C IF COLOR INDEX IS UNDEFINED, DON'T CHANGE THE COLOR (COLOR INDEX
C CAN RANGE FROM 0 THROUGH NCOLDF-1)

IF(ICOLOR.GE.NCOLDF .OR. ICOLOR.LT.O) RETURN
CALL GSTXCI(ICOLOR)
CALL GSPLCI(ICOLOR)
RETURN
END
SUBROUTINE PLTLIN(X.Y.N)

C
C PLOT A POLYLINE
C

DIMENSION X(N),Y(N)
C

CALL GPL(N,X,Y)
RETURN
END
SUBROUTINE PLTSTR(X,Y,H,STRING,NC)

C
C PLOT A STRING OF CHARACTERS
C

CHARACTER*(*) STRING
C

CALL GSCHH(H)
CALL GTX(X,Y,STRING(1:NC))
RETURN
END

37

